Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Ming Zhang,^a Rui-Qin Fang^a and Seik Weng Ng^{a,b}*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.024 wR factor = 0.065 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 24 June 2004 Accepted 28 June 2004

Online 9 July 2004

Rerefinement of poly[[tetra- μ -oxo-dioxobis-(1,10-phenanthroline- $\kappa^2 N$,N)dimolybdenum(VI)iron(II)]-di- μ -oxo] in the centrosymmetric space group $P2_1/m$

Polymeric $[Fe_2{MoO_4}_2(C_{12}H_8N_2)_2]_n$ adopts a chain structure that propagates linearly along the *b* axis of the monoclinic unit cell. The $(C_{12}H_8N_2)Fe$ moiety lies on a mirror plane, as does the MoO₄ moiety; two MoO₄ anions link two $(C_{12}H_8N_2)Fe$ entities to form an eight-membered Fe-O-Mo-O-Fe-O-Mo-O-Fe-O-Mo-O-Feo-Mo-O- ring; the Fe atom is five-coordinate in a trigonal bipyramidal environment; the phenanthroline ligand spans the axial-equatorial sites.

Comment

The title compound, (I), was previously refined in the space group $P2_1$ (Chu *et al.*, 2001); a check with *PLATON* (Spek, 2003) shows that the structure is better described in $P2_1/m$. In this setting, it is isostructural with the Zn analog, which was also reported earlier (Hagrman & Zubieta, 1999); both structures have been described in detail. With the refinement based on new diffraction measurements, the (C₁₂H₈N₂)Fe moiety lies on a mirror plane, as does the MoO₄ moiety; two MoO₄ anions link two (C₁₂H₈N₂)Fe entities to form an eightmembered Fe–O–Mo–O–Fe–O–Mo–O– ring (Fig. 1).

Experimental

A mixture of Na₂MoO₄·2H₂O (0.194 g, 0.8 mmol), FeCl₂·4H₂O (0.123 g, 0.62 mmol), 1,10-phenanthroline (0.054 g, 0.3 mmol), ethylenediamine (0.034 g, 0.58 mmol) and water (7 ml) was placed in a 15 ml Teflon-lined stainless-steel bomb, which was heated at 448 K for 120 h. The bomb was cooled slowly to room temperature and black block-shaped crystals were isolated in about 45% yield. Analysis found: C 36.35, H 2.07, N 7.02%; calculated for $C_{12}H_8FeMoN_2O_4$: C 36.40, H 2.04, N 7.07%.

 $\ensuremath{\mathbb{C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

 $D_x = 2.159 \text{ Mg m}^{-3}$

Cell parameters from 2636

 $0.13 \times 0.11 \times 0.11 \ \mathrm{mm}$

1469 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0414P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

-3

+ 0.0379P]

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}$

 $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

1360 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\theta = 2.3-27.6^{\circ}$ $\mu = 2.23 \text{ mm}^{-1}$

T = 293 (2) K

Block, black

 $R_{\rm int}=0.025$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -11 \rightarrow 11$ $k = -8 \rightarrow 8$

 $l = -13 \rightarrow 13$

Crystal data

 $[Fe_2Mo_2O_8(C_{12}H_8N_2)_2]$ $M_r = 791.99$ Monoclinic, $P2_1/m$ a = 8.873 (1) Å b = 6.567 (1) Å c = 10.629 (2) Å $\beta = 100.437$ (2)° V = 609.1 (2) Å³ Z = 1

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.697, T_{max} = 0.791$ 4906 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.065$ S = 1.041469 reflections 118 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Mo1-O1 1.778 (2) Fe1	$-O1^{ii}$ 1.980 (2) $-O2^{iii}$ 2.068 (3)
M-1 011 1779(2) E-1	$-O2^{iii}$ 2.068 (3)
M01-01 $1.78(2)$ FeI	(_)
Mo1-O2 1.748 (2) Fe1	-N1 2.143 (3)
Mo1-O3 1.708 (3) Fe1	-N2 2.190 (3)
Fe1-O1 1.980 (2)	
$O1 - Mo1 - O1^{i}$ 109.1 (1) O1	-Fe1-N2 90.8 (1)
O1-Mo1-O2 110.6 (1) O1	$^{ii}-Fe1-O2^{iii}$ 91.2 (1)
O1-Mo1-O3 109.2 (1) O1	ⁱⁱ -Fe1-N1 111.6 (1)
O1 ⁱ -Mo1-O2 110.6 (1) O1 ⁱ	ⁱⁱ -Fe1-N2 90.8 (1)
$O1^{i}-Mo1-O3$ 109.2 (1) $O2^{i}$	iii -Fe1-N1 97.9 (1)
O2-Mo1-O3 108.4 (2) O2	ii -Fe1-N2 174.8 (1)
$O1 - Fe1 - O1^{ii}$ 135.9 (1) N1	-Fe1-N2 76.9 (1)
O1-Fe1-O2 ⁱⁱⁱ 91.2 (1) Mo	1-O1-Fe1 153.4 (1)
O1-Fe1-N1 111.6 (1) Mo	$1 - O2 - Fe1^{iii}$ 170.2 (2)

Symmetry codes: (i) $x, \frac{3}{2} - y, z$; (ii) $x, \frac{1}{2} - y, z$; (iii) 2 - x, 1 - y, 2 - z.

H atoms were positioned geometrically $[C-H = 0.93 \text{ Å}; U_{iso}(H) = 1.2U_{eq}(C)]$ and were included in the refinement in the riding-model approximation.

Figure 1

ORTEPII (Johnson, 1976) plot (50% probability displacement ellipsoids) of a fragment of the polymeric chain of the title compound. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $x, \frac{3}{2} - y, z$; (ii) $x, \frac{1}{2} - y, z$; (ii) 2 - x, 1 - y, 2 - z.]

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; method used to solve structure: atomic coordinates taken from the Zn analog (Hagrman & Zubieta, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *OPTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank Shanxi Normal University and the University of Malaya for the generous support of this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winconsin, USA.

Chu, D. Q., Xu, J. Q., Yu, Y. L., Duan, L. M., Ye, L., Wang, T. G. & Tang, A. Q. (2001). Pol. J. Chem. 75, 765–769.

Hagrman, P. J. & Zubieta, J. (1999). Inorg. Chem. 38, 4480-4485.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.